1 The points A, B and C have coordinates $\mathrm{A}(3,2,-1), \mathrm{B}(-1,1,2)$ and $\mathrm{C}(10,5,-5)$, relative to the origin O . Show that $\overrightarrow{\mathrm{OC}}$ can be written in the form $\lambda \overrightarrow{\mathrm{OA}}+\mu \overrightarrow{\mathrm{OB}}$, where λ and μ are to be determined.

What can you deduce about the points $\mathrm{O}, \mathrm{A}, \mathrm{B}$ and C from the fact that $\overrightarrow{\mathrm{OC}}$ can be expressed as a combination of $\overrightarrow{\mathrm{OA}}$ and $\overrightarrow{\mathrm{OB}}$?

2 Vectors \mathbf{a} and \mathbf{b} are given by $\mathbf{a}=2 \mathbf{i}+\mathbf{j}-\mathbf{k}$ and $\mathbf{b}=4 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$.
Find constants λ and μ such that $\lambda \mathbf{a}+\mu \mathbf{b}=4 \mathbf{j}-3 \mathbf{k}$.

3 A triangle ABC has vertices $\mathrm{A}(-2,4,1), \mathrm{B}(2,3,4)$ and $\mathrm{C}(4,8,3)$. By calculating a suitable scalar product, show that angle ABC is a right angle. Hence calculate the area of the triangle. [6]

